MAE 131B

Fundamentals of Solid Mechanics II (4 units)

Class/Laboratory Schedule: four hours of lecture, eight hours outside preparation. 12 hours/week total

Course Coordinator(s): Nicholas Boechler, Michael Frazier, Maziar Ghazinejad,

Textbooks/Materials:

1. A.C. Ugural and S.K. Fenster, Advanced Strength and Applied Elasticity (4th Edition), Prentice Hall, 2003

Catalog Description: Continuous mechanics of solids and its application to the mechanical response of machine and structural elements. Stress and strain in indicial notation; field equations and constitutive relations. Linear elastic stress analysis in torsion, plane stress and plane strain; stress concentrations; fracture mechanics. Extremum principles and structural stability. Viscoelasticity, plasticity, and failure criteria. Theorems of plastic limit analysis.

Prerequisites: MAE 131A or SE 110A and MAE 105. Enrollment restricted to Engineering majors only

Course Type: Technical Elective Course / Can be used as a substitution for MAE 160

Performance Criteria:

Homework: 20% Midterm exam: 30% Final exam: 50%

Course Objectives:

Objective 1

- 1.1 Students will demonstrate that they can apply the equilibrium conditions to determine the distribution of internal forces in a structure
- 1.2 Students will demonstrate that they can distinguish between normal and shear stresses, dilatational and shear strains, and the corresponding material properties

Objective 2

2.1 Students will demonstrate that they can recognize the qualitative features of the stresses, strains, material properties and area properties associated with axial loading, torsion and bending

- 2.2 Students will demonstrate that they can solve for stresses in a structural component under axial loading, torsion, and bending, acting individually or in combination
- 2.3 Students will demonstrate that they can solve for the deformation of a structural component due to axial loading, torsion, and bending loads, acting individually or in combination

Objective 3

- 3.1 Students will demonstrate that they can solve for the principal stresses in structural components subjected to a combined state of loading, including non-beam-like solids using techniques such as Airy stress functions
- 3.2 Students will demonstrate that they can recognize, formulate and solve statically indeterminate structural components

Objective 4

- 4.1 Students will demonstrate that they can solve for the response of viscoelastic materials
- 4.2. Students will demonstrate that they can solve for the response and failure threshold of elastoplastic materials

ABET Student Outcomes Satisfied:

- (1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- (4) an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- (6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- (7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
- (ME8) an ability to work professionally in mechanical systems areas.
- (ME10) an ability to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations).
- (ME11) an ability to model, analyze, design, and realize physical systems, components or processes.

Course Topics:

- 1. Stress and Equilibrium
- 2. Displacement and Strain
- 3 Stress-Strain Relations
- 4. Problems in Elasticity
- 5. Failure Criteria & Viscoelasticity

- 6. Energy Methods
- 7. Bending of Beams
- 8. Torsion of Prismatic Bars
- 9. Stability and Buckling

Last Updated: 22nd July 2019