Aerospace engineering is a four-year curriculum that begins with fundamental engineering courses in mechanics, thermodynamics, materials, solid mechanics, fluid mechanics, and heat transfer. Additional courses are required in aerospace structures, aerodynamics, flight mechanics, propulsion, controls, and aerospace design. Graduates of this program normally enter the aerospace industry to develop aircraft and spacecraft, but also find employment in other areas that use similar technologies, such as mechanical and energy-related fields. Examples include automobile, naval, and sporting equipment manufacturing.
The B.S. degree in Aerospace Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.
Four year plans
- for students admitted Fall 2023: Aerospace Engineering Four Year Plan- FA23 Catalog
- for students admitted Fall 2019-2022 Aerospace Engineering Four Year Plan- FA19 Catalog
- for students admitted Fall 2017, 2018: Aerospace Engineering Four Year Plan- FA17 Catalog
- for students admitted 2010-2016: Aerospace Engineering Four Year Plan - FA16 Catalog
Three year plans
- for transfer students admitted Fall 2023: Aerospace Engineering Three Year Plan- FA23 Catalog
- for transfer students admitted Fall 2019-2022: Aerospace Engineering Three Year Plan- FA19 Catalog
- for transfer students admitted Fall 2017, 2018: Aerospace Engineering Three Year Plan - FA17 Catalog
- for transfer students admitted 2010-2016: Aerospace Engineering Three Year Plan - FA16 Catalog
Prerequisite Guides: (Prerequisites must be taken before a course, not concurrently)
- for all students admitted Fall 2023: Aerospace Engineering Prerequisite Chart- FA23 Catalog
- for all students admitted Fall 2019-2022: Aerospace Engineering Prerequisite Chart- FA19 Catalog
- for all students admitted Fall 2017, 2018: Aerospace Engineering Prerequisite Chart-FA17 Catalog
- for all students admitted Fall 2010-2016: Aerospace Engineering Prerequisite Chart-FA16 Catalog
*All MAE required courses must be taken for a letter grade unless stated otherwise by the department.
PROGRAM EDUCATIONAL OBJECTIVES
Five to ten years after completing our program, our alumni are expected to:
- Enjoy successful careers where they utilize a strong technical foundation to excel as engineers, technology leaders, innovators, or other contributors to society.
- Keep pace with rapid technological change and further develop their knowledge and skills across a range of disciplines throughout their professional careers or in pursuit of advanced education.
- Lead local or global teams, where they will communicate effectively, interact ethically and knowledgeably, and take into account societal issues to provide a positive impact on society.
STUDENT OUTCOMES
Graduates of AE are expected to have:
-
an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
-
an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
-
an ability to communicate effectively with a range of audiences
-
an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
-
an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
-
an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
-
an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
-
knowledge of aerodynamics, aerospace materials, structures, propulsion, flight mechanics, and stability and control
-
knowledge of attitude determination and control, space structures, orbital mechanics, and rocket propulsion
-
an ability to integrate knowledge of the fundamental topics in the design of aerospace systems
AEROSPACE ENROLLMENT BY CLASS LEVEL*
13/14 | 14/15 | 15/16 | 16/17 | 17/18 | 18/19 | 19/20 | |
---|---|---|---|---|---|---|---|
Freshman | 27 | 34 | 54 | 36 | 83 | 31 | 50 |
Sophomore | 55 | 38 | 63 | 76 | 82 | 72 | 72 |
Junior | 56 | 65 | 61 | 93 | 75 | 119 | 90 |
Senior | 125 | 109 | 124 | 138 | 177 | 172 | 190 |
TOTAL | 263 | 246 | 302 | 343 | 417 | 394 | 402 |
*Enrollment figures are based on fall week three headcounts. Class level is based on the total number of units completed, so Senior standing does not necessarily reflect the number of students taking 4th year classes.
AEROSPACE DEGREES AWARDED
2013/14 | 2014/15 | 2015/16 | 2016/17 | 2017/18 | 2018/19 |
---|---|---|---|---|---|
62 | 45 | 44 | 60 | 66 | 98 |